Integration of real-time optimization and model predictive control

نویسندگان

  • V. Adetola
  • M. Guay
چکیده

This paper proposes a controller design approach that integrates RTO and MPC for the control of constrained uncertain nonlinear systems. Assuming that the economic function is a known function of constrained system’s states, parameterized by unknown parameters and time-varying, the controller design objective is to simultaneously identify and regulate the system to the optimal operating point. The approach relies on a novel set-based parameter estimation routine and a robust model predictive controller that takes into the effect of parameter estimation errors. A simulation example is used to demonstrate the effectiveness of the design technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Optimization Process for Nonlinear Model Predictive Control of PMSM

Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...

متن کامل

Adaptive Simplified Model Predictive Control with Tuning Considerations

Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...

متن کامل

Scaling, Modeling and Traffic Control of a Real Railway Network using Max-plus Algebra and Model Predictive Control

Delay time recovery can increase the efficiency of the railway network and increase the attractiveness of railway transport against other transportation systems. This article presents a new dynamical model of railway system. The proposed model is a discrete event systems that is defined based on the deviation of travel time and deviation of stop time of trains. Due to the existence of multiple ...

متن کامل

A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint

In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...

متن کامل

Designing a novel structure of explicit model predictive control with application in a buck converter system

This paper proposes a novel structure of model predictive control algorithm for piecewise affine systems as a particular class of hybrid systems. Due to the time consuming and computational complexity of online optimization problem in MPC algorithm, the explicit form of MPC which is called Explicit MPC (EMPC) is applied in order to control of buck converter. Since the EMPC solves the optimizati...

متن کامل

Development of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS

In this paper‎, ‎a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance‎. ‎The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances‎. ‎The continuous system with time-delay is discretized using uncertainty po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009